鼓型齿式联轴器是由我国研制的新型高性能联轴器,它集中现有标准弹性联轴器不同结构的优点,例如具有梅花形弹性联轴器的优点:弹性元件受压,结构简单,性高。克服了梅花形弹性联轴器的缺点,更换弹性元件时移动半联轴器,双法兰梅花形弹性联轴器和转动惯量,应用范围受到限制。传递相同转矩时径向尺寸比GB4323弹性套柱销联轴器要小得多,质量轻,转动惯量小。
鼓型齿式联轴器的表面需要进行渗碳或者调质处理,由于渗碳的方法不同,所以导致齿面的硬度不一样。气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂或液体渗剂,在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。固体渗碳是将工件和固体渗碳剂(木炭加剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温时间,使活性碳原子渗人工件表面的一种早的渗碳方法。
鼓型齿式联轴器需要进行高频调质处理,由于高频处理后需要较高温度进行,会受热变形。轴孔公差会由于热胀冷缩而变成负公差。因此对于联轴器高频处理在加热炉内加热到指定温度,并检测工件温度。将联轴节取出后翻身,放人炉内继续加热。如用木柴加热大型联轴节。则经2~3h后,用量棒反复测量孔径,直至尺寸较大的量棒能自由进入联轴节孔内,加热即可结束。吊出联轴节,装上撞板、抬攀或其他套装工具。
而对于鼓型齿式联轴器校正的位置,使联轴节孔垂直(垂直套装时)或呈水平(水平套装时),并清扫联轴节孔,使内孔无杂物。将联轴节吊近转轴处;再一次用量棒检查内孔尺寸是否有所需装配间隙,如量棒能通过,才能进行套装。在转轴的配合面上均匀地涂上机油。
工程实际中,由于制造和安装误差,零件的变形、磨损、基础的下沉等原因,将引起两轴轴线位置的偏移,发生轴向位移、径向位移、角位移和综合位移等。偏移的存在使得轴、轴承、联轴器产生附加动载荷,引起振动,使机器零件工作情况恶化。随着近代工业技术的高度发展,对鼓型齿式联轴器的承载能力、性、效率、圆周速度、体积和重量等技术和经济指标提出了愈来愈高的要求。
鼓型齿式联轴器的优点:
鼓型齿式联轴器其刚性大,有挠性,无弹性,故不适宜用于要求减振、缓冲及二轴对中要求严格的机械。
1、鼓型齿面使内、外齿的接触条件,避免了在角位移条件下直齿齿端棱边挤压,应力集中的弊端,同时了齿面摩擦、磨损状况,降低了噪声,维修周期长;
2、外齿套齿端呈喇叭形状,使内、外齿装拆方便。
3、传动达99.7%。基于经上特点,已普遍以鼓型齿替代直齿式联轴器。
4、承载能力强。在相同的内齿套外径和联轴器大外径下,鼓型齿式联轴器的承载能力平均比直齿式联轴器提高15~20%;
5、角位移补偿量大。当径向位移等于零时,直齿式联轴器的许用角位移为1º;而鼓型齿式联轴器的许用角位移为1º-30º,提高50%,在相同的模数、齿数、齿宽下,鼓型齿比直齿允许的角位移大。
鼓形齿式联轴器问题及解决方案:
1、电机安装不当
由于电动机未标明磁力中心的位置,电机在静态安装时,其转子位置不在磁力中心的位置上,安装过程中忽略了电机磁力中心的影响。当电机转动时,由于齿式联轴器的牵制作用,电机转子无法定位在磁力中心下选装,加剧了对齿式联轴器的冲击,加速了齿轮轴器的损坏。
2、主电机轴轴向窜动量过大
该电机采用滑动轴承支撑,出厂标准转子轴向窜动量为电机磁力中心的5%,且未标明磁力中心的位置,而齿式联轴器允许的轴向窜动量为5%,正是由于主电机的转子的轴向窜动量大于鼓形齿式联轴器的轴向窜动量,造成在主电机的开停过程中,转子的轴向窜动对齿式联轴器产生的冲击力,引起齿轮的损坏。
解决方案:
仍采用同型号的电机,滑动轴承支撑,由电机厂按转子的轴向窜动量严格控制在电机的磁力中心的±2.5mm内制造,并标明磁力中心的位置。在定子、转子上做上标记。
1、更换鼓形齿式联轴器图纸测绘
把联轴器现场拆解测量,并查阅联轴器配套设备的相关说明,绘制联轴器的草图。
2、材料及热处理的确定
根据有关的这家联轴器资料,将联轴器的材料定为20CrMoTi,齿面高品淬火,热处理硬度为HRC60-65,20CrMoTi是一种的低碳合金钢,可承受较大的载荷。
3、鼓形齿式联轴器齿形的更改
原来联轴器的齿是用的是直齿,经过研究决定将原来的直齿改为鼓形齿,因为鼓形齿的联轴器允许的角位移,大约是直齿轮的5-6倍。
热门产品
Product